3+3 Consensus Meeting Introducing Model Based Dose Escalation in a Pharmaceutical Environment

James Matcham Head, ECD Biometrics 3rd December 2014

Agenda

- Background
- Challenge
- Actions
- Outcome

Background

- The objective of a SAD study is to find range of safe doses for further investigation in MAD studies
 - Low starting doses
 - Dose escalation in small cohorts
 - Logarithmic increases in dose
- Traditional oncology 3+3 studies provide a simple, practical, quick rule for escalation to the next planned dose and definition of MTD

3+3 Traditions

Practical

- Boiler plate text for protocol
- No statistician needed at Safety Review Meetings
- No understanding of statistics needed

Simple

- Simple dose escalation rules
- Allows clinical interpretation of 'tolerated'

Quick

Everybody understands the design

Other Options

- Other options have been looked into due to the inefficiency of the 3+3 design
 - Continuous Reassessment Model (CRM)
 - Modified Therapeutic Probability Interval (mTPI)
 - Bayesian Logistic Regression Model (BLRM)
 - Bivariate modelling of toxicity and efficacy (Thall and Simon approach)
 - Many other themes
- A "Practical CRM" approach based on BLRM

Practical CRM Approach

- Keep the practical nature of the N+N approach
 - Low starting doses
 - Dose escalation in small cohorts
 - Logarithmic increases in dose
- Choosing a level of toxicity that is relevant to the indication, eg, TD20, TD05
- Decide the next dose based on an updated estimate of the toxicity response curve

ECD | Biometrics

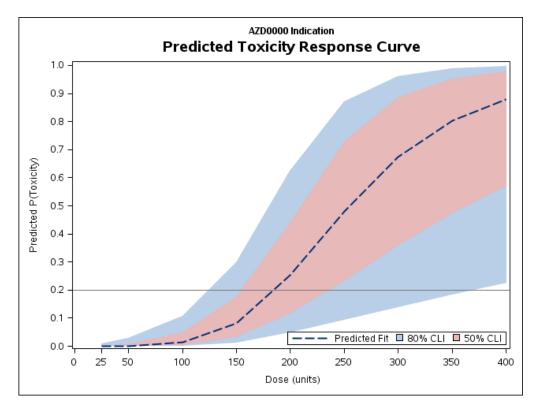
Bayesian Logistic Regression Model

 We can model the toxicity response curve using a logistic model relating the P(toxicity), p_i, to the dose x_i

$$logit(p_i) = \alpha + \beta ln(x_i)$$

- Using a Bayesian approach we can
 - use informative priors for α and β
 - predict the P(toxicity) after each cohort
 - use this to choose the next dose

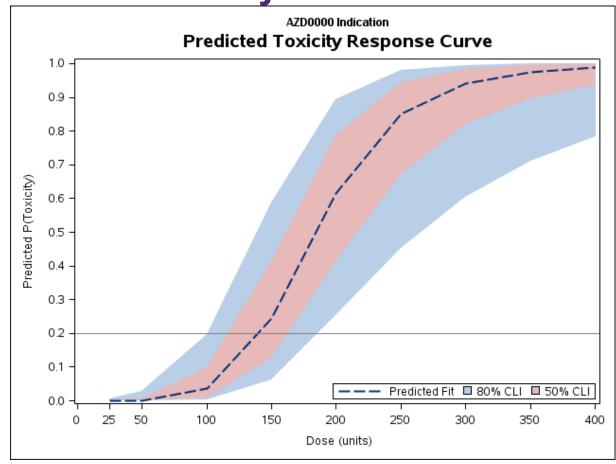
- Choose a set of "nominal" doses for escalation and the cohort size
 - 25, 50, 100, 200, 400
 - Cohort size = 3
- Choose a set of "possible" doses that could be used
 - 25, 50, 100, 150, 200, 250, 300, 350, 400
- Choose a level of toxicity to estimate
 - Dose at which 20% of patients experience toxicity (TD20)
- Provide some prior information about the toxicity response curve from previous or pre-clinical work
 - Estimated TD20= 100 and TD50 = 300


ECD | Biometrics

- Initiate the study, if no DLTs, escalate through the "nominal" doses
- After seeing the first DLT in a cohort
 - update the toxicity response curve
 - predict the P(tox) at each "possible" dose
 - choose the next dose from the set of "possible" doses based on the predicted P(tox)
 - Variance gain
 - Patient gain
 - Determinant gain (D-Optimality)
 - Other loss functions

Data so far

Dose	N	DLTs
25	3	0
50	3	0
100	3	0
200	3	1



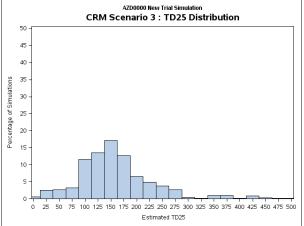
Estimated TD20=188 (95%Crl: 95 - 2232) Next dose = 200

Data so far

Dose	N	DLTs
25	3	0
50	3	0
100	3	0
200	3	2

Estimated TD20=143 (95%CrI: 76 - 235) Precision reached

Practical CRM Safety Rules


- We need some additional rules for safe dose escalation.
 - Never choose a dose more than double the previous dose
 - Never choose a dose where the current estimate of P(Tox) > 0.50
 - Do not repeat a dose more than once
- Stop escalation when
 - maximum dose or maximum sample size has been reached
 - TD20 precision has been reached (eg Ucl/Lcl < 5.0)

Performance

- The Practical CRM has improved performance
 - More precise estimation of MTD
 - More patients at tolerable doses
 - Sample size
 - Increased flexibility of dosing, when needed
- It can be generalised
 - Different definitions of MTD can be used
 - N per cohort can be altered
 - It can be altered to a model for efficacy e.g. Bayesian EMax Model

Concerns

- Some staff do not like this move away from tradition
 - investigators
 - ethics committee
 - regulators
 - journal reviewers
- Some welcome the move
 - benefit to patients
 - quicker trials
 - better estimates of MTD
- All are concerned with
 - more work in study design stage
 - slowing down study starts
 - involving statisticians during the study

Addressing the Concerns

- Protocols are specified as before, but with a change to the dose escalation rule section (template text provided)
- Simple approach to setting prior distributions
- No waiting for statisticians
 - We can generate a "playbook" for each cohort for each possible outcome.
- Designs can be simulated to show benefits compared to 3+3 design
- We can choose the best based on operating characteristics

Current Status

- Communicating the science
 - presentation at internal symposia
 - retro-fitted a previous study
 - Practical CRM workshop at internal symposia
- Demonstrating the practicality
 - software for simulation and analysis
 - three studies currently piloting new approach
 - compare performance at design stage

3+3 Consensus Meeting Introducing Model Based Dose Escalation in a Pharmaceutical Environment

James Matcham Head, ECD Biometrics 3rd December 2014