

Oxford Biomedical Research Centre

Enabling translational research through partnership

Office for Clinical Research Infrastructure

NIHR Statistical Group Imaging in Translation Research Meeting

Challenges in the design and analysis of studies evaluating imaging modalities

Pembroke College, Oxford, OX1 1DW Tuesday 1st October 2013 10:00 - 16:00

<u>nihr-stats@kcl.ac.uk</u>

NHS National Institute for Health Research

Oxford Biomedical Research Centre Enabling translational research through partnership

Office for Clinical Research Infrastructure

NIHR Statistical Group: Imaging in Translation Research Meeting

SESSION 1 CHAIR: Professor Doug Altman

10:30 - 10:35	Introduction and welcome Professor Doug Altman, University of Oxford
10:35 - 10:45	Translational research and the NIHR
	Mark Samuels, Managing Director, NOCRI
10:45 - 11:15	What is translational research and why is it important? Professor Keith Channon, Director, NIHR Oxford BRC
11.15 – 11.45	Imaging technology evaluation for NICE: a physicists perspective Professor Steven Keevil, King's College London

- **11:45 12.15**Statistical considerations: studies evaluating imaging modalitiesProfessor Doug Altman
- 12:15 12:30 Questions & discussion

NOCRI

NIHR Office for Clinical Research Infrastructure

Translational Research and the NIHR

Mr Mark Samuels NIHR Office for Clinical Research Infrastructure (NOCRI) Mark.samuels@nihr.ac.uk NOCRI NIHR Office for Clinical Research

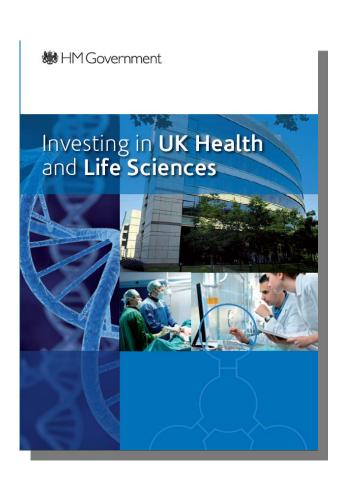
Infrastructure

- To improve health outcomes through advances in research
- To improve quality of care by NHS participation in the research process
- To strengthen our international competitive position in science
- To drive economic growth through investment by life science industries

Research and Growth: Strategy for UK Life Sciences

"Life science - and the UK's role in it - is at a crossroads.

Behind us lies a great history of discovery, from the unraveling of DNA to MRI scanning and genetic sequencing.


We can be proud of our past, but this government is acutely aware that we cannot be complacent about the future."

David Cameron

December 2011

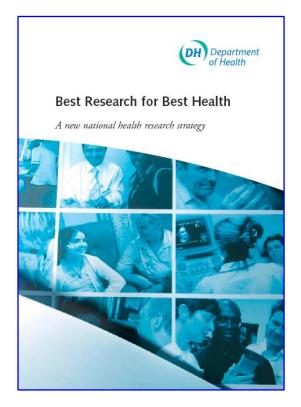
NOCRI

Research and Growth: Strategy for UK Life Sciences

"The old 'big pharma' model is becoming more difficult to maintain.

In its place is a new focus on translational medicine - more early stage clinical trials with patients, more external innovation, more collaboration."

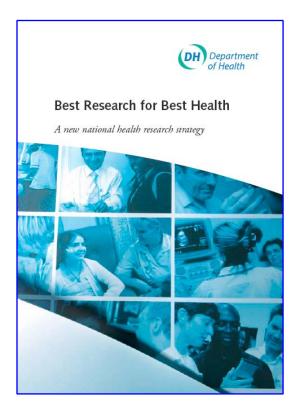
"This is an ambitious strategy to:


•open up universities and business to more collaboration;

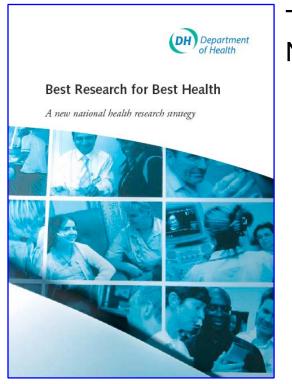
•invest in the best ideas at an early stage;

•remove regulatory barriers;

•open up the NHS to new innovations and new clinical trials."


National Institute for Health Research

NIHR established on 1st April 2006 to

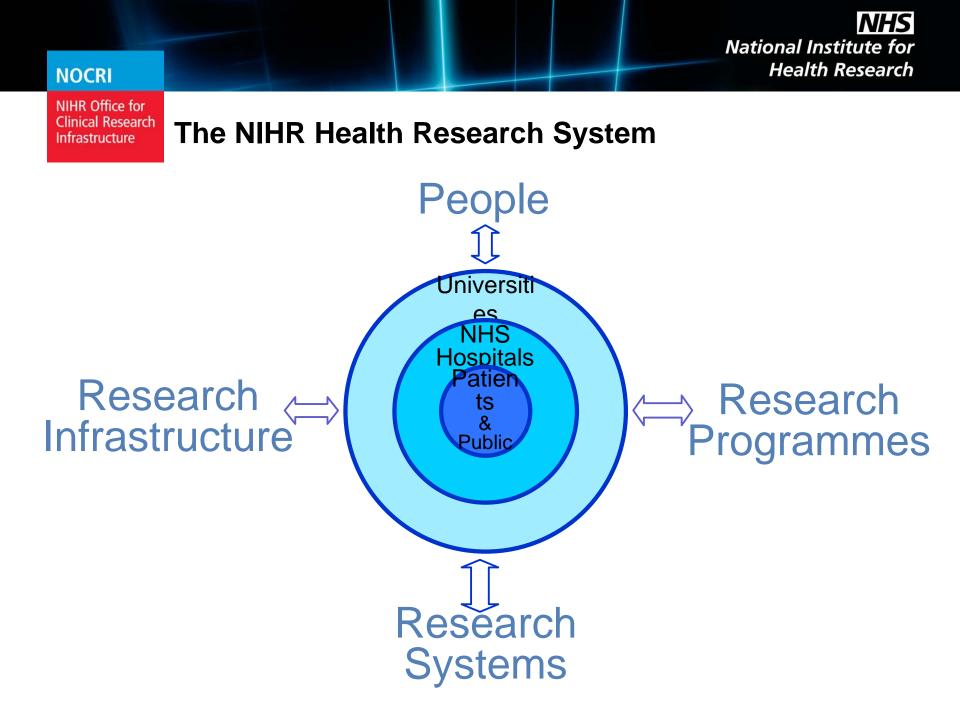

deliver the strategy set out in Best Research for Best Health

Vision

To improve the health and wealth of the nation through research

Aim

To create a health research system in which the NHS supports:

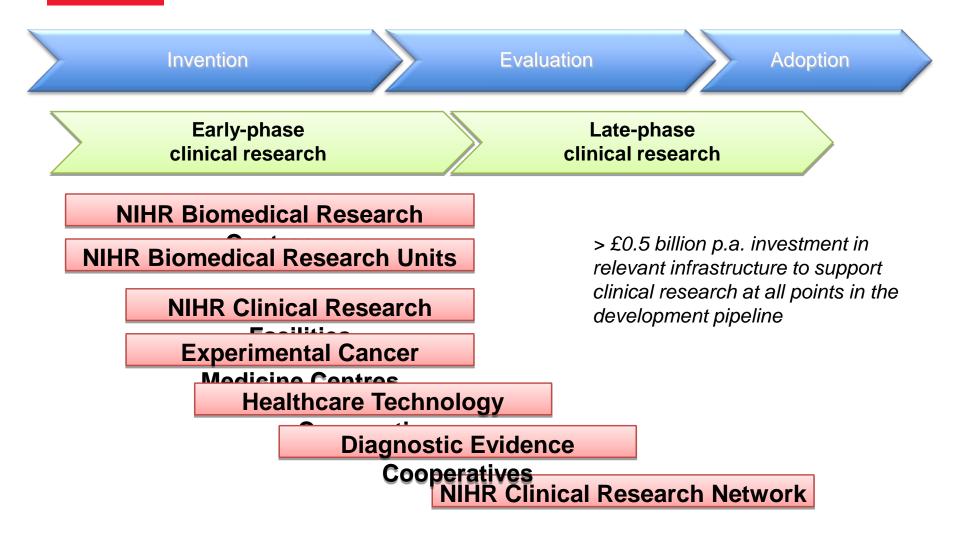

- outstanding individuals
- working in world-class facilities
- conducting leading-edge research
- focused on the needs of patients and the public

Strategic priorities

- Transform research in the NHS
- Increase the volume of applied health research, and opportunities to participate in it, for the benefit of patients and the public
- Promote and protect the interests of patients and the public in health research
- Drive faster translation of basic science discoveries into tangible benefits for patients
- Develop and support the people who conduct and contribute to applied health research
- Maximise the research potential of the NHS to contribute to the economic growth of the country through the life science industries

Structure of the NIHR

- Distributed organisation
- Focused on the needs of patients
- Clear but flexible structure
- Maximum devolved decision-making
- Maximum local accountability



NOCRI

NIHR Office for Clinical Research Infrastructure

NIHR Research Infrastructure

NIHR Clinical Research Network

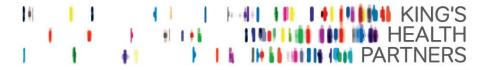
A single point of contact and entry for all Network research services
Study and protocol feasibility from key opinion leaders and active commercial researchers
Access to a streamlined system for obtaining NHS permission for R&D approvals
Support with study start-up processes, including costing and contract negotiations using standard templates
Dedicated and trained Research Network staff and support services to ensure study delivery at site level
Performance management of the adopted study in partnership with a company
Research Network 'badging' of adopted trials to attract both investigators and patients

NOCRI

Scale of opportunity for research partners

Access via a single point of entry to world class science in world leading institutions and patients across the NHS

NOCRI supports industry through:


- sign-posting
- introductions
- establishing collaborations
- managing relationships

Contact NOCRI at:

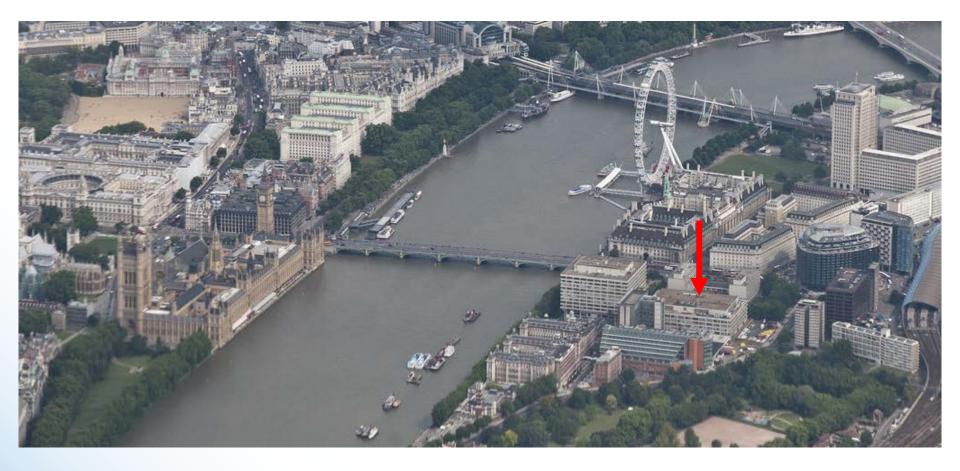
nocri@nihr.ac.uk

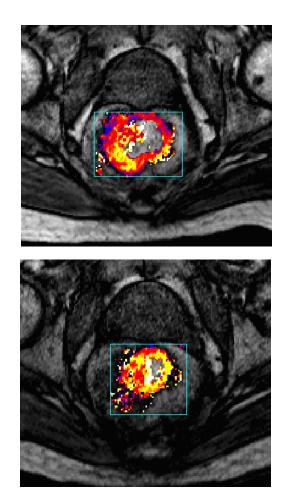
www.nocri.nihr.ac.uk

An Academic Health Sciences Centre for London

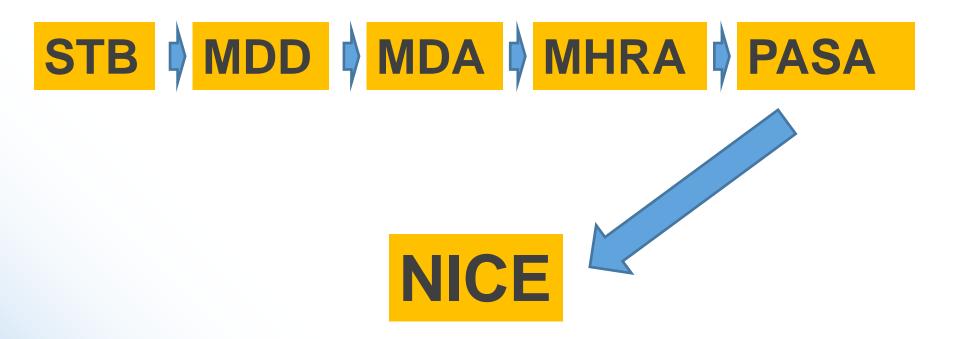
Pioneering better health for all

Imaging technology evaluation for NICE: a physicist's perspective

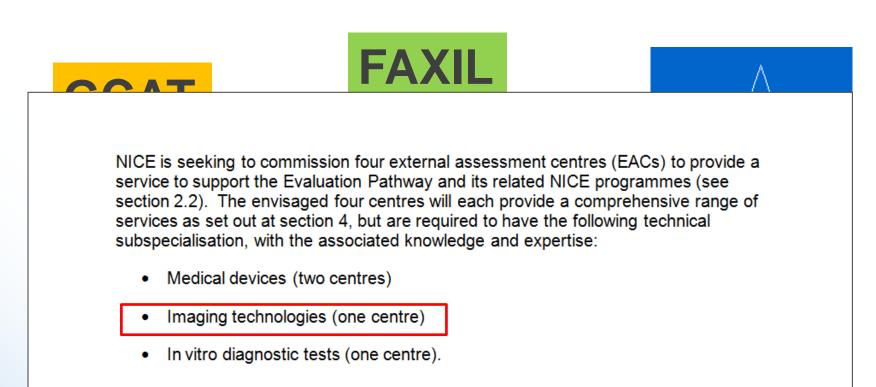

Professor Stephen Keevil, Joint Director, KITEC: King's Imaging Technology Evaluation Centre



King's College Hospital NHS



- Imaging is no longer a purely diagnostic technique: it is increasingly important in treatment planning, guidance and assessment
- Imaging biomarkers have the potential to characterise individual patients, enabling personalised medicine
 - Improved quality of care through better patient selection
 - Reduced costs through identifying non-beneficial treatments
- Imaging makes increasing demands on capital and revenue budgets
 - Rapid development requires rapid adoption
 - But the evidence base is often poor
- Needs an integrated approach involving manufacturers, technical experts and clinical end users

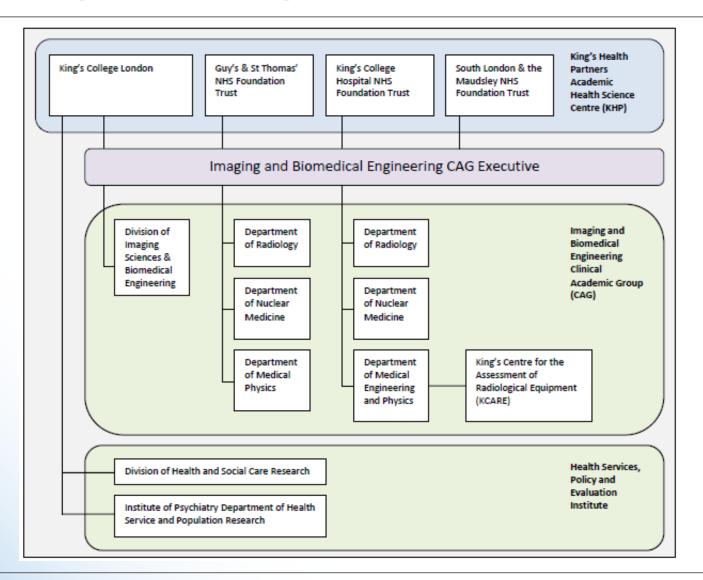


🚺 🕴 💵 🗰 🗰 🗰 KING'S HEALTH PARTNERS

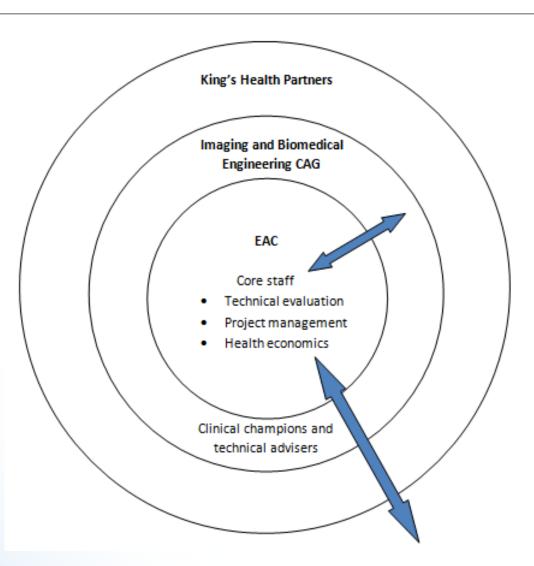
I 🛛 🕴 🚺 🚺 🚺 🖬 KING'S HEALTH PARTNERS

Page 23

- Assessment reports
- Facilitating collaborative research into clinical and cost utility
- Specification, compilation and analysis of databases and registers
- Systematic reviews and meta-analysis
- Technical evaluation to advise on effective use
- Much broader than previous assessment centres: requires a multidisciplinary approach
- An idea task for an Academic Health Science Centre!



King's Health Partners Tender for NICE External Assessment Centre Four – Imaging Technologies


Executive Summary

Background and context

Imaging continues to place high demands on hospital and health system capital and revenue budgets due to high equipment costs, rapid technological change and the need to recruit, train and retain highly skilled staff. Over the last few decades, advances in medical imaging have provided new measures for characterizing individual patients, resulting in the growing application of imaging in a variety of care pathways. Furthermore, the role of imaging has significantly changed from being purely diagnostic towards becoming a tool for imageguided surgical and therapeutic intervention. Today, imaging is increasingly used to assess the effects of treatment and to predict outcome. These imaging biomarkers are potentially of high importance in the development of new treatments (e.g. drugs, medical devices) and the selection of appropriate treatments for individual patients (personalised medicine). Personalisation of treatment has the potential to improve the quality of care by refining patient selection and characterisation and delivering better clinical outcomes. It will hopefully also lead to substantial cost reduction by identifying treatments that have little or no benefit for individual patients. But it is important that new applications of imaging are evidence-based and cost-effective. At present, new imaging technology is often adopted

The broader picture

🚺 🕴 💵 🗰 🗰 🗰 🗰 🗰 🕴 KING'S HEALTH PARTNERS


Outcome

- Tender submitted 9th December 2010
- Final round presentations scheduled for 22nd December 2010, postponed (on 21st December!) due to snow
- January 2011- March 2012 negotiations!
- Contract awarded March 2012
- So 2 years of 3 year term remaining
- Work slow to ramp up, very busy since Christmas 2012

NICE Medical Technologies Evaluation Programme (MTEP) Page 29

- To promote faster uptake of new medical technologies in the NHS
- To encourage collaborative research, in both industry and the NHS, to generate evidence on the clinical utility and/or healthcare system benefits of selected technologies

- Technology is a medical device (defined in EU Directive 93/42/EEC, as amended)
- Technology is new or innovative technology
- Technology has a CE mark, or this is expected within 12 months
- Technology is available in the NHS, or manufacturer plans to launch it in the NHS

- Technology notified by manufacturer / sponsor
- NICE consults with Expert Advisers
- Medical Technologies Advisory Committee selects suitable technologies
 - September MTAC: 2/6 technologies selected
 - Reasons for rejection: inadequate clinical evidence, inadequate economic evidence, not unique...
- Routed to MTEP if technology:
 - is likely to be cost saving or cost neutral
 - can be evaluated as a single technology
 - can be evaluated on a short timescale
- Or can be routed to other programmes

- Project allocated to an External Assessment Centre (EAC)
- NICE prepares and consults on scope, defining disease(s), patients and technology covered by the assessment, outcomes, relevant comparators
- Manufacturer submission of clinical evidence (2 weeks)
- Manufacturer submission of economic evidence (6 weeks)
- EAC assessment report submitted (10 weeks)
- EAC presents at MTAC meeting. MTAC produces draft recommendations (c15 weeks)
- Final guidance issued following consultation (c32 weeks)

Contents of assessment report

- c100 pages
- c100 person-days of work
- Critique of clinical evidence: search strategy, study selection
- Critique of study methodology and sponsor's analysis and synthesis
- Additional work on clinical evidence
- Critique of economic evidence: search strategy, study selection
- Critique of cost model
- Additional work on economic evidence

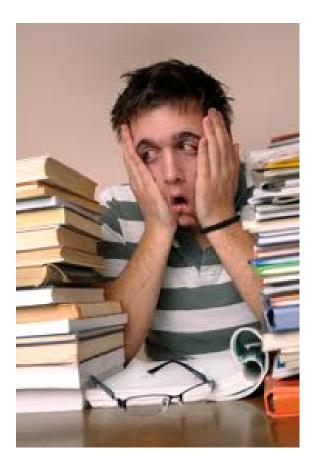
K College LONDON
Assessment Report
The deko TM electro-stimulation

TZINC'S

The geko™ electro-stimulation device for venous thromboembolism prophylaxis

I I I III III III KING'S HEALTH PARTNERS

KITEC - King's Imaging Technology Evaluation Centre Department of Medical Engineering and Physics King's College Hospital NHS Foundation Trust Denmark Hill London, SE5 9RS, UK Phone: +44 (0) 203 299 1627 Fax: +44 (0) 203 299 1627



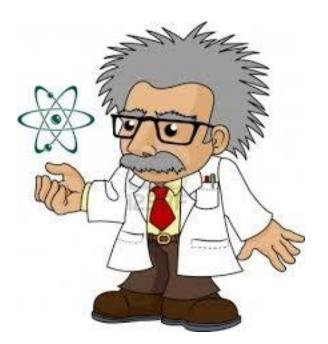
- Assessment report: 2 (neither imaging related!)
- Initial product assessment: 62
- Research facilitation: 4

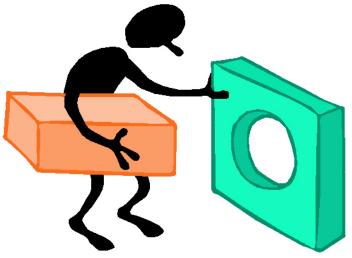
Workload

- Establishment of registers: 1
- Technical advice / horizon scanning: 4
- Expressions of interest: 8
- Miscellaneous: 3

Comments: nature of allocated work

- Very few imaging devices are coming through the programme
 - New or novel 'single technologies' that reduce costs are rare
 - Incremental development by several companies in parallel: about methods, not manufacturers
 - The Diagnostics Assessment Programme (DAP) can consider (1) multiple technologies, (2) cost-effectiveness
 - There is little evidence of impact of imaging on patient outcomes
- We are being used as a generic assessment centre and a source of specialist advice on imaging


- Workload is unpredictable, new projects can be assigned at any time
- Timescales are extremely demanding, particularly if additional work is needed
- There is limited scope for extensions
- Variation of project plans requires discussion and approval by NICE
- All EACs are required to respond to all calls for expression of interest
- Eols are assessed according to rigid criteria: it is possible to 'know too much'!



- Products are often quite new, with little published evidence available
- Manufacturers are often SMEs, with limited resources/expertise for systematic review and analysis
- Significant additional work can be required from the EAC
- NICE has a relatively low threshold for evidence
 - RCTs not expected
 - Considerable reliance on expert opinion
- Products have already been filtered by MTAC: a positive outcome is desired at this stage

- Expert advisers need to be ratified by professional bodies before they can be formally consulted, which can introduce delay
- Consultation with expert advisers is formal and documented
- We cannot use local experts as expert advisers if we also want to involve them in production of the report

- **Comments: practical difficulties**
- Only 2 years left when the contract was signed: difficult to recruit good people to fixed term contracts
- Work can be complex, requiring significant senior level input
- Difficult to coordinate work of four different teams across three campuses
- Difficulties at NHS-university interface: finance, HR, IT...

- It's been challenging but interesting; we're keen to continue
- We and NICE have learned a lot from the process
- Current contract expires March 2014
- New call for tenders was expected in late June
- At the time of writing, we are still waiting...

Office for Clinical Research Infrastructure

NIHR Statistical Group: Imaging in Translation Research Meeting

SESSION 2 CHAIR: Professor Janet Peacock

- 13:15 13:30Challenges for the statistician in designing studies in imaging
Professor Janet Peacock, King's College London
- 13:30 13:45Challenges of functional & structural MRI in a clinical trialDr Thomas Nichols, University of Warwick

13:45 – 14:00CASE STUDY 1: T1 mapping - bringing imaging biomarker into
clinical practiceDr James Moon, NIHR University College London and UCLH BRC

14:00 – 14:15CASE STUDY 2: Tracking eye gaze during radiologist interpretation
of endoluminal 3D CT Colonography
Dr Tom Fanshawe, University of Oxford

NHS National Institute for Health Research

Office for Clinical Research Infrastructure

NIHR Statistical Group: Imaging in Translation Research Meeting

SESSION 2 CHAIR: Professor Janet Peacock

14:15 - 14:30CASE STUDY 3: 1000 cardiac phenomes project - using
computational anatomy to understand heart diseaseDr Declan O'Regan, Imperial College London

 14:30 – 14:45
 CASE STUDY 4: Diagnostic performance of [11C]choline PET/CT

 versus MRI in prostate cancer nodal staging: Research Challenges

 Dr Amar Challapalli, NIHR Imperial BRC &CRUK-EPSRC-MRC-NIHR

 Comprehensive Cancer Imaging Centre

14:45 - 15:00CASE STUDY 5: Imaging biomarkers in colorectal cancerDr Gina Brown, NIHR Royal Marsden & ICR BRC

Office for Clinical Research Infrastructure

Raise the profile of statistics within NIHR

NIHR Statistics

Group

Promote good design and statistical practice

Facilitate networking opportunities

Office for Clinical Research Infrastructure

NIHR Statistics Group

- Established 2011
- Educational meetings and workshop events
- Identifying statisticians for DMCs and TSCs

STAT-LINK@JISCMAIL.AC.UK

Email: listserv@jiscmail.ac.uk

Subject: BLANK

Message: SUBSCRIBE STAT-LINK Firstname Lastname

• Future: mentoring schemes and training

Office for Clinical Research Infrastructure

- We are looking for statisticians to join the working committee
- We are looking for institutions who would be willing to host an event

Email: nihr-stats@kcl.ac.uk

UNIVERSITY^{OF} BIRMINGHAM

Surgical Clinical Trials Workshop

A joint workshop for NIHR statisticians and trainee surgeons on designing, running and analysing surgical studies.

Wednesday 12th February 2014 University of Birmingham

University of London

Challenges for statisticians with studies in imaging

Janet Peacock

Division of Health and Social Care Research, King's College London; NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London

> NIHR Statistics Group: Imaging in Translational Research University of Oxford 1st October 2013

> > www.kcl.ac.uk

What do statisticians do?

University of London

Interdisciplinary team work

- Design «
- Analysis <-----
- Interpretation of results
- ─ Reporting/presenting results ∠
- Methodological issues
- Both new and existing research
- Statistical thinking

Eg designing an evaluation

University of London

- What is the research question?
- Or what question does the data answer?

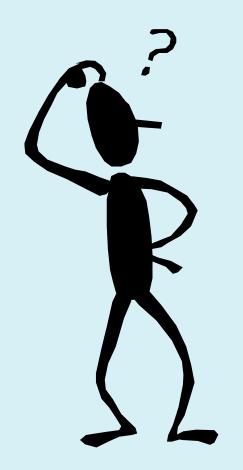
Eg: is a new imaging device better than current one?

- How assess 'better'?
- Technological /clinical outcome?
 - eg same measurements, diagnostic accuracy, length of stay, mortality etc

What design for evaluation?

• What design will answer the question?

- Or what question does design answer?
- Gold standard is randomised controlled trial Some issues are:
 - blinding for patient, researcher, assessor
 - Incomplete data
- Practicality may dictate observational study Some issues are:
 - Data quality
 - Comparability of groups & interpreting differences seen



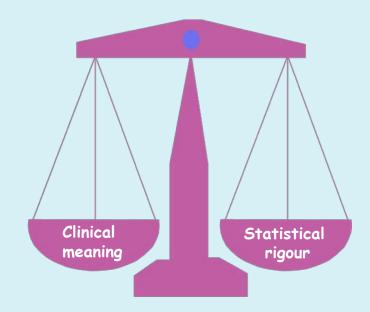
Analysis

What approach to analysis?

- Standard method?
- Multiple approaches?
- Assumptions met?
- Straightforward to interpret?
- Easy to communicate?
- Clinically meaningful?

Reporting and interpreting results

- Transparent reporting of methods, assumptions, results
- Selection of results to present (Clear tables, figures; all subjects accounted for, estimates & CIs)
- Conclusions mesh with data in all parts of document cf abstracts


Summary

Statisticians work collaboratively to:

-- design and analyse studies to answer important clinical questions
-- review research conducted by others

- Statisticians develop methodological solutions to problems
- Aim of statistics in medical research is always to balance statistical rigour with clinical meaningfulness

Tracking eye gaze during radiologist interpretation of endoluminal 3D CT colonography

Tom Fanshawe Department of Primary Care Health Sciences University of Oxford

NIHR Programme Grant to investigate diagnosis of colorectal cancer using imaging technologies

Collaborators include:

Steve Halligan (UCL, lead) Emma Helbren (UCL, radiology) Susan Mallett (University of Oxford, statistics) Peter Phillips (University of Cumbria, image perception)

Background

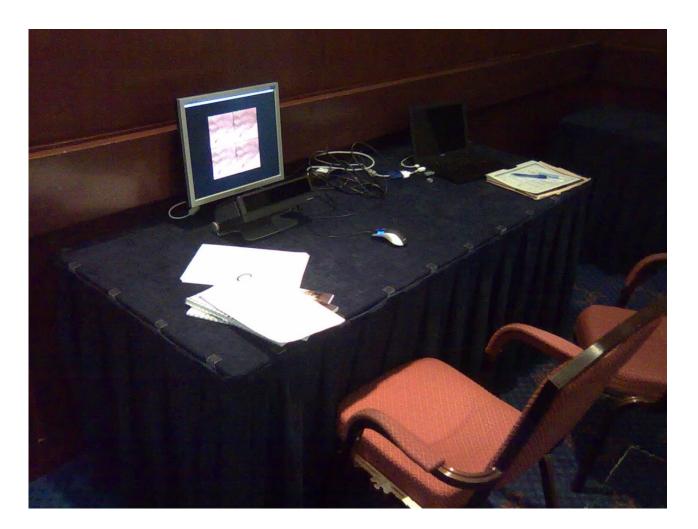
- Bowel cancer has 6% lifetime prevalence in the UK
- 17,000 deaths/year in the UK, ~50% mortality rate
- Symptoms common, so diagnosis must be rapid, acceptable to patients, and cost-effective
- Computed tomographic (CT) colonography: CT scanning + 3D imaging
- 'Virtual colonoscopy'

Reader (radiologist) navigates an endoluminal reconstruction of the colon

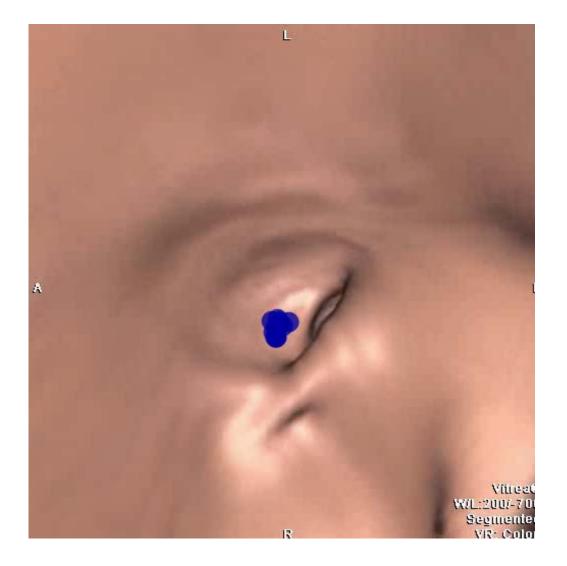
Target for identification in this study is adenomatous polyps – precursors of colon cancer

Diagnosis may be assisted by the presence of an indicative mark generated by a computer aided detection (CAD) system (Vitrea, Vital Images)

Early appearance of CAD mark

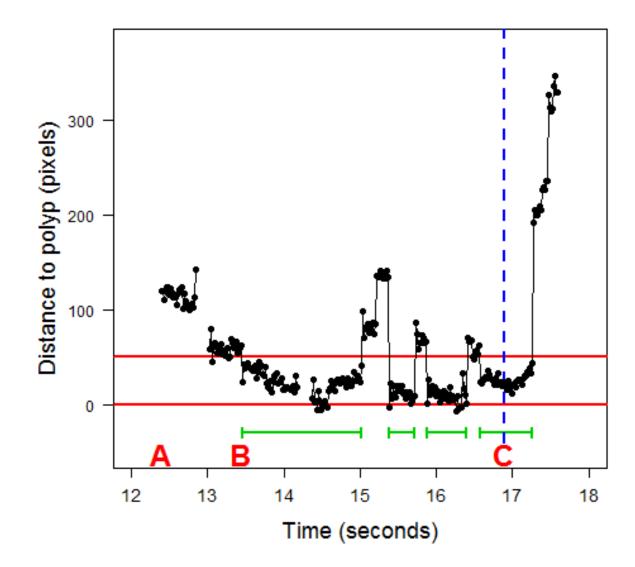

Design – computer-aided detection study

- 42 readers viewed fifteen 30-second video clips twice each
- In each video, one of the two viewings for each reader contained the CAD mark; the other did not
- Readers were asked to indicate with a mouse click when they saw a polyp



Each video contained one polyp

Eye tracking



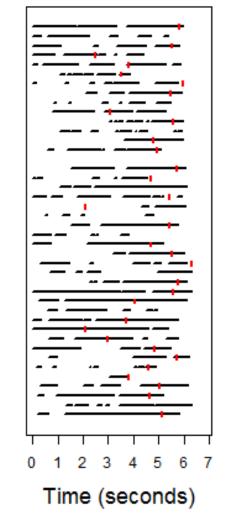
Strategy

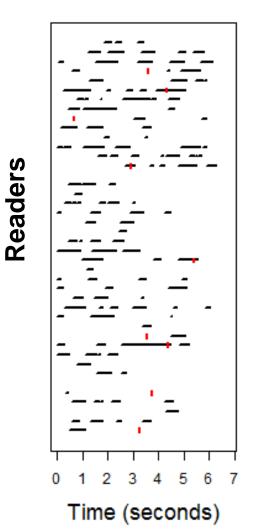
- Main interest is in whether gaze is directed at the polyp
- Define a 'pursuit' of the polyp as a period when the gaze is directed:
 - Within 50 pixels of the boundary of the polyp
 - For at least 100ms of consecutive measurements

Distance to polyp

Issues in data analysis

- Reader- and case-specific measurement error
- Missing data
 - Multiple imputation
- Hierarchical data structure
 - Random effects for reader and case
- Different distributional forms for different outcomes (continuous, binary, rate, time-toevent), including zero-inflation

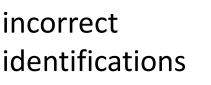


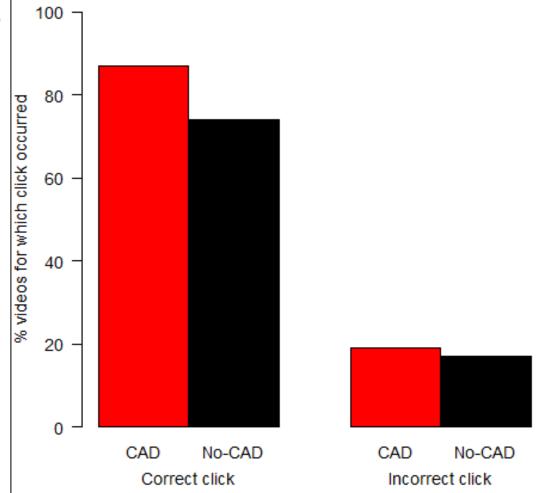

Results – single case

CAD

No CAD

• CAD increased average time spent looking at the polyp





Diagnostic accuracy

• Presence of CAD resulted in an increase in number of correct polyp identifications

• No change in number of incorrect

Results

Additionally, CAD is associated with:

- Shorter time to first pursuit of polyp 0.58 to 0.48 seconds
- Quicker polyp identification
 3.24 to 3.01 seconds
- Increased rate of pursuits before polyp identification
 0.69 to 0.78 pursuits per second
- A 'distractor' effect

Readers spend 24% of time looking at the CAD mark even when polyp not visible

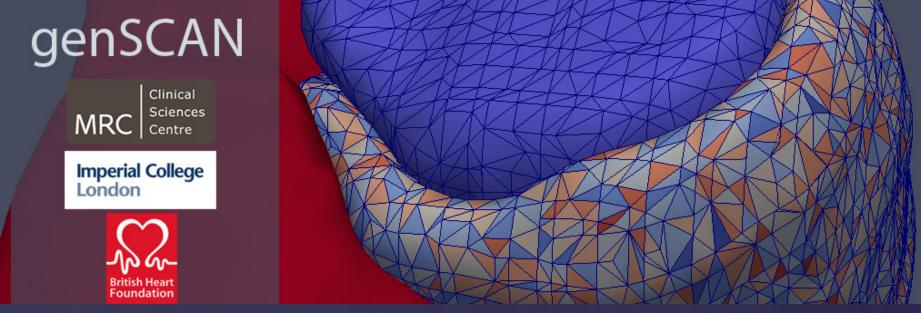
Summary

- This is the first study to examine visual search during 3D CT colonography viewing
- Addition of a CAD mark held reader gaze and disrupted usual visual search patterns
- The CAD mark did not cause significant diagnostic confusion, and reduced identification error rate

Phillips, P. et al (2013). Method for tracking eye gaze during intepretation of endoluminal 3D CT colonography. *Radiology* 267: 924-931.

Halligan, S. et al (2011). Incremental benefit of computer-aided detection when used as a second and concurrent reader of CT colonographic data: multiobserver study. *Radiology* 258: 469-476.

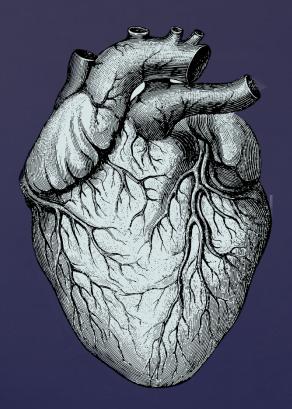
Drew, T. et al (2012). When and why might a computer-aided detection (CAD) system interfere with visual search? An eye-tracking study. *Acad Radiol* 19: 1260-1267.


Dr T.R. Fanshawe

Department of Primary Care Health Sciences

University of Oxford

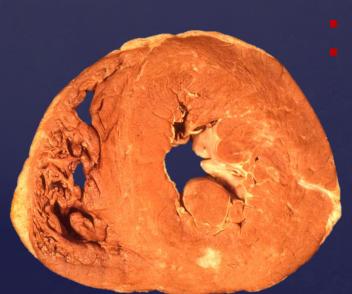
thomas.fanshawe@phc.ox.ac.uk



1000 Cardiac Phenomes Project

Dr Declan O'Regan MRC Senior Clinician Scientist CSC MR Facility How do genes influence complex biological systems in humans?

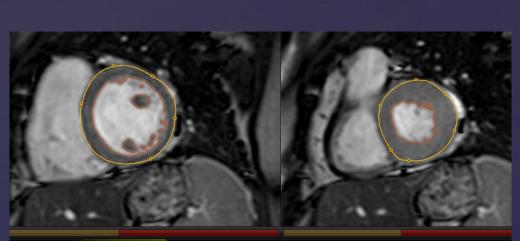
Phenotyping

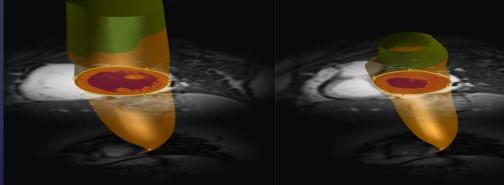

The heart is a complex electromechanical biological system.

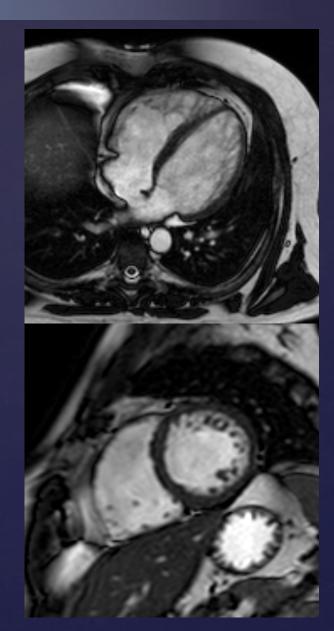
Can we create a realistic computational model of its function and how genes control it?

Phenotyping

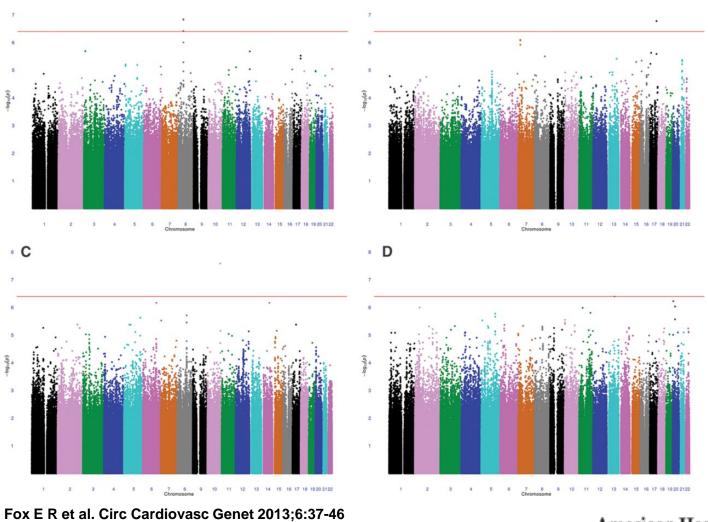
Let's take the simple but important phenotype of left ventricular hypertrophy:

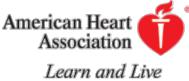

Thickening of the heart muscle Predicts all cause mortality Amenable to treatment Heritability estimate 20 – 70% Both environmental and genetic interactions

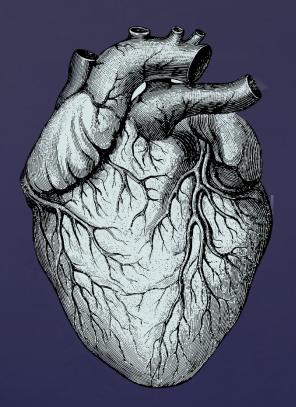



Cardiac MR Imaging

Cardiac MR Imaging

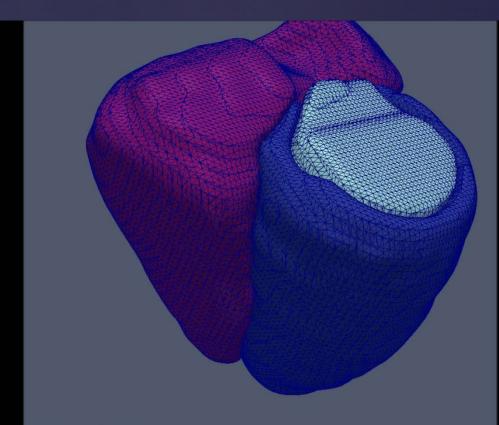





Manhattan plots showing the genome-wide –log10 P values for interrogated single-nucleotide polymorphisms across the 22 autosomal chromosomes for (A) left ventricular mass, (B) left ventricular internal diastolic diameter, (C) interventricular septal wall th...

• A

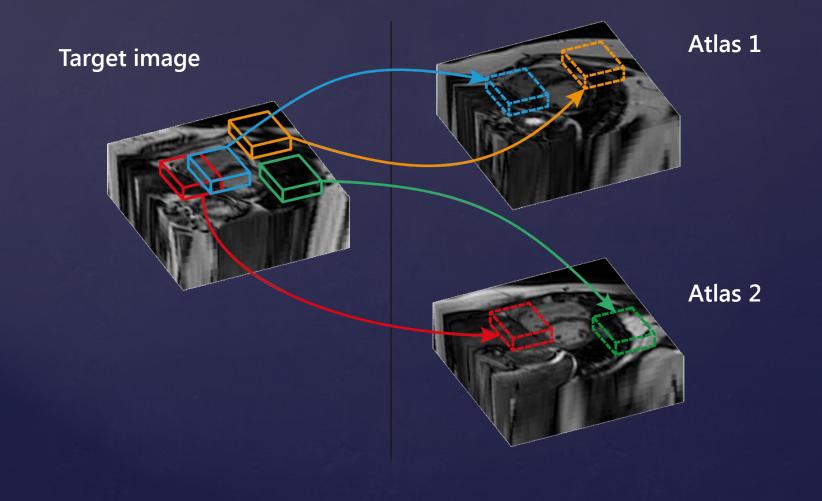
Conventional phenotyping



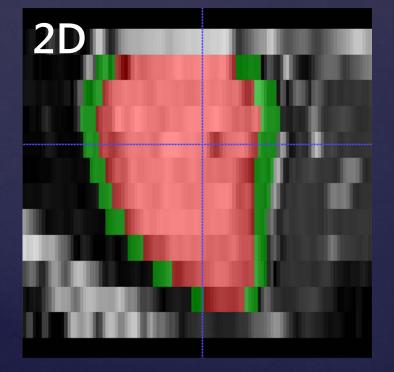
Limitations of current techniques:

- Does not model the heart as an organ system
- Measurements are subjective and global
- Inconsistent comparisons between subjects
 - Complex traits of motion and strain not included

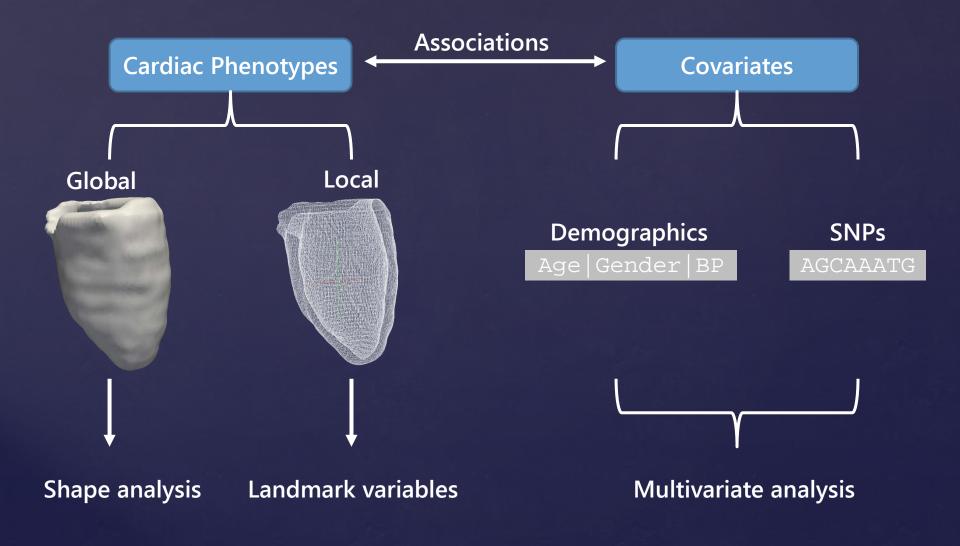
Cardiac atlas


Manually labelled images of the heart are used to guide segmentation and registration

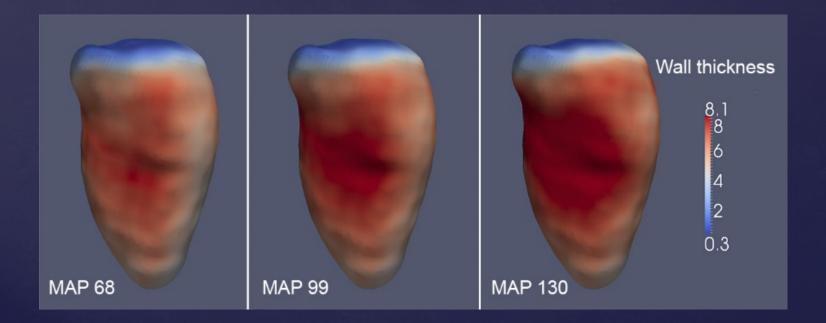
Screencast-O-Matic.com


Segmentation & Co-registration


Iterative segmentation and co-registration with decision fusion.

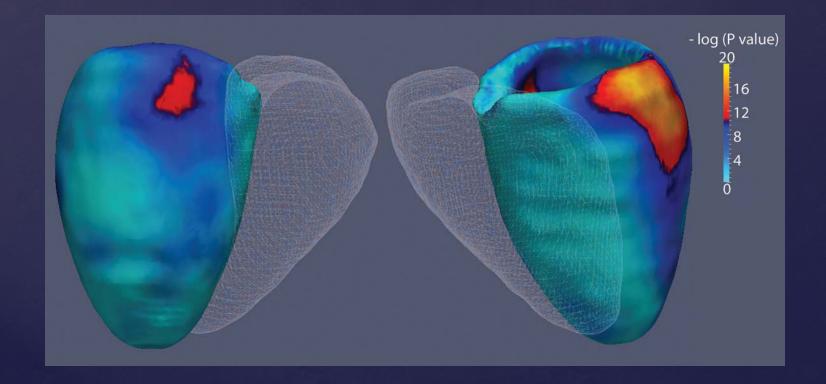

3D whole heart MRI

High resolution MR imaging improves the precision of automated analysis


Statistical strategies

Left ventricular mass

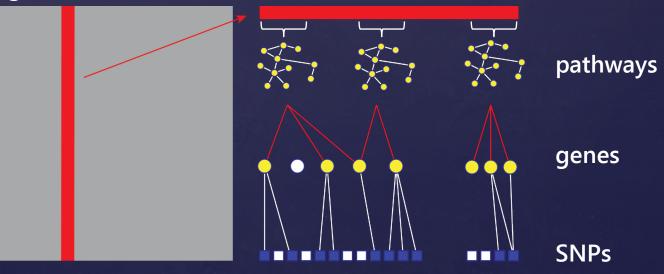
Mass univariate linear regression with wall thickness as dependent variable with covariates held constant


Sub-clinical associations are measurableSubjects can be modelled simultaneously

Voxelwise non-parametric tests

Compare wall thickness voxel by voxel between gene variants and controls

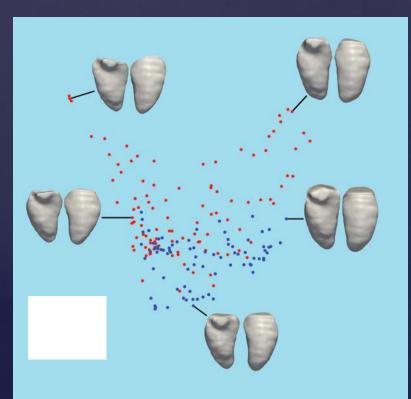
- Bonferroni correction for multiple testing
- Analysis of covariance to correct for blood pressure and age etc.

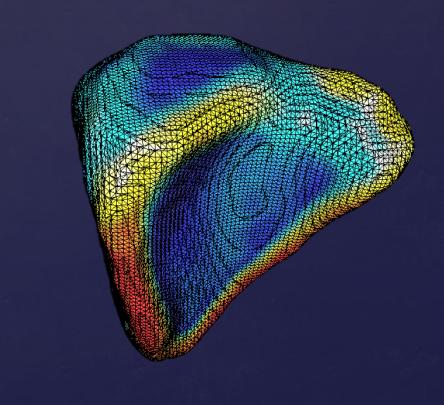

Sparse regression

To detect causal SNPs across the genome
Large multiple testing problem
Ignores dependencies between SNPs

Sparse regression

- Changes problem from "significance of each predictor" to "subset of best predictors"
- Multi-task regression incorporates sparse structure in genotypes and phenotypes


Regression coefficients



Shape analysis

Assess similarity between phenotypes without a priori hypotheses

- Manifold learning finds a low-dimensional representation of a complex shape
- Finds clusters of similar phenotypes on a non-linear Laplacian Eigenmap

Computational imaging-genetics

Imaging-genetics is a powerful tool for understanding the physiological effect of genetic and environmental factors on the human heart.

Future work:

- Test regression models with initial sequencing data
- Integrate strain and motion data into physiological models
- Explore phenotypic classification using manifold learning
- Support vector machine diagnosis
- Disease-specific atlases

MRC Clinical Sciences Centre

Prof Stuart Cook Dr Declan O'Regan Dr Enrico Petretto Dr Antonio de Marvao Giuliana Durighel Tamara Diamond Laura Monje Garcia Marina Quinlan

Royal Brompton Hospital

Dr Paul Barton Dr James Ware Dr Rachel Buchan Dr Angharad Roberts **Department of Computing** Prof Daniel Rueckert Dr Wenzhe Shi

Department of Mathematics Dr Giovanni Montana Dr Chris Minas

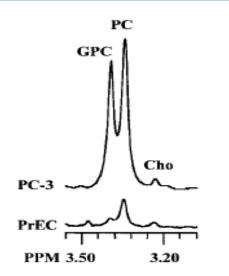
Bioinformatics Support Service Mark Woodbridge

Department of Medicine Dr Tim Dawes Prof Martin Wilkins

Visiting workers

Dr Ben Corden Dr Niall Keenan

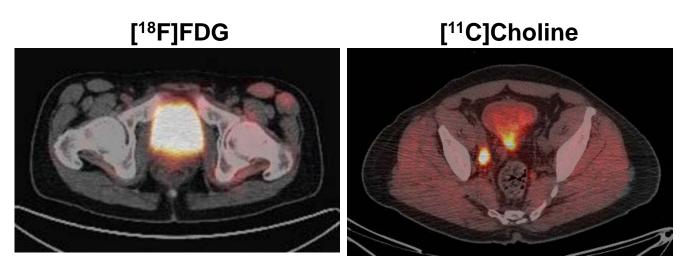
Diagnostic performance of [¹¹C]choline PET-CT vs. MRI in prostate cancer nodal staging: Research challenges.

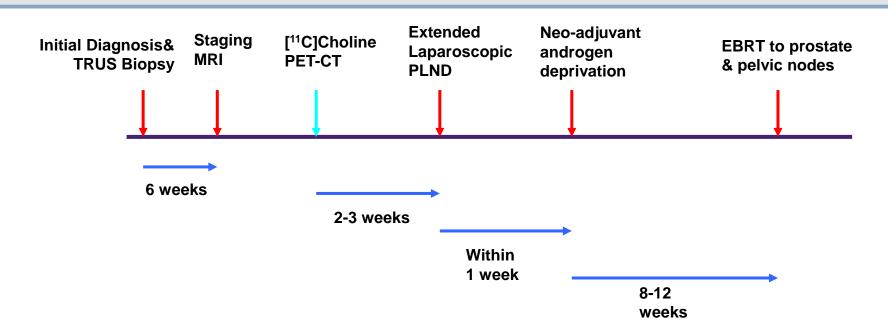

Dr. Amar Challapalli Clinical Research Fellow, Imperial College, London

Nodal staging in Prostate cancer

- LN metastases are seen in 25-30% of pts
- LN involvement reduces disease free survival from 85% to 50%
- Pelvic LND gold standard
 - Invasive
 - 4-5% morbidity
 - Expensive, needs hospitalization
 - May not be able to sample all potential nodal areas
- Current anatomic imaging has limited diagnostic accuracy
 - Pooled sensitivity 39%
 - Pooled specificity 82%

Hovels et al, Clin Radiol 2008

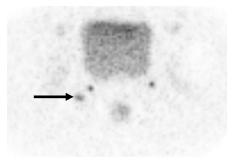

Why Choline


•The increased choline peak is due to altered PL metabolism.

•No GPC-> PCho switch. May be increased CK or PLA activity or Choline transport.

Ackerstaff et al, Can Res 2001: 61; 3599

Study Schema



- 26 patients evaluable (28 recruited)
- Dynamic [¹¹C] choline-PET-CT of the pelvis and lower abdomen
- Diagnostic performance for nodal detection was calculated compared to histology
- SUV_{ave} and SUV_{max} were compared with CHK α and Ki67 IHC scores.

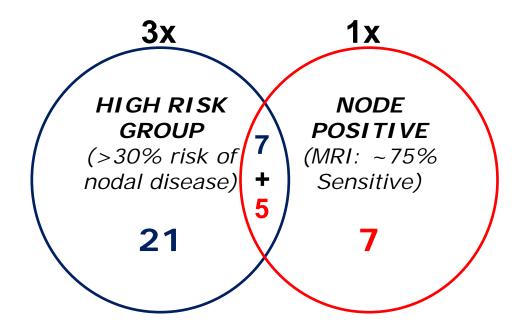
Criteria for nodal involvement

• MRI: _____ >10 mm ____ 0.8

• [¹¹C]Choline PET:

 5 point scale for ROC analysis MRI

Nodes <4mm or not seen Nodes = 4 - 5.9 mm Nodes = 6 - 7.9 mm Nodes ≥ 8mm but <10mm Nodes ≥ 10mm

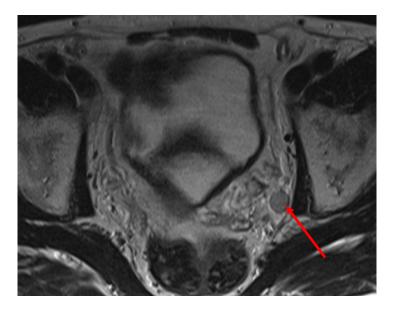

[¹¹C]Choline PET/ PET-CT

Definitely normal

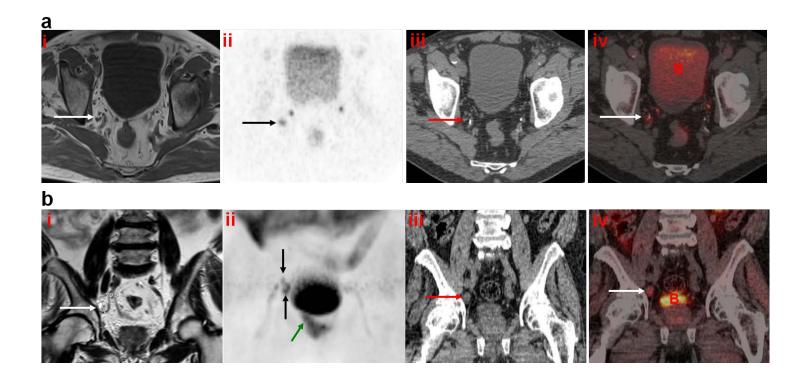
Probably normal (more likely to be physiological) Indeterminate (equally physiological/ pathological) Probably abnormal (more likely to be pathological) Definitely malignant

Sample size calculation

- This was a feasibility/pilot study
- We were aiming to recruit about 10-12 node positive patients

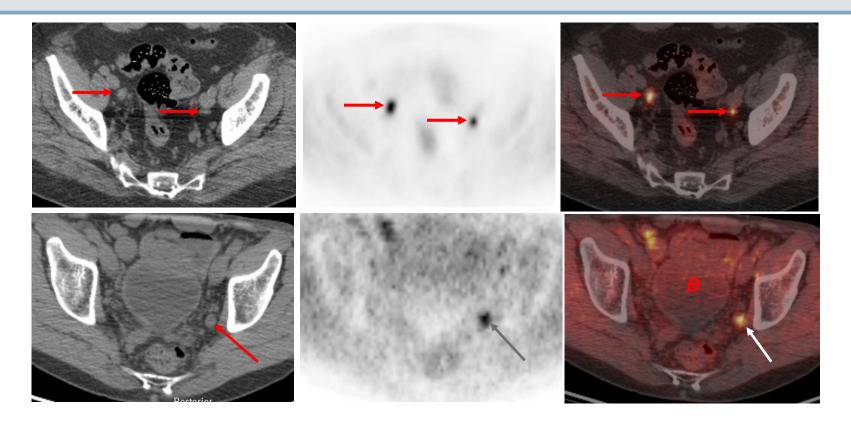

Results

- 406 lymph nodes, in 26 patients, were assessable.
- 27 (6.7%) involved pelvic nodes at eLPL were detected in 9 patients.
- 17 out of the 27 involved nodes were sub-centimetre.

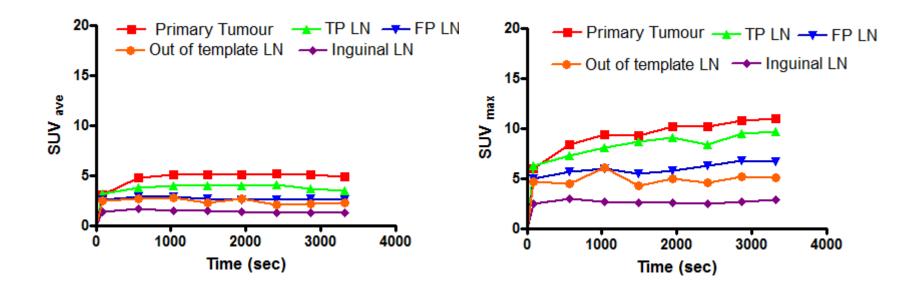

Nodal size	No of	MRI	[¹¹ C]choline	[¹¹ C]choline
(mm)	Lymph nodes (LN)	+ (%)	PET + (%)	PET-CT + (%)
0.1 – 1.9	1	0 (0)	0 (0)	0 (0)
2-4.9	4	0 (0)	0 (0)	1 (25)
5 – 9.9	12	0 (0)	4 (33)	4 (33)
≥ 10	10	5 (50)	7 (70)	9 (90)

Nodal Analysis on MRI

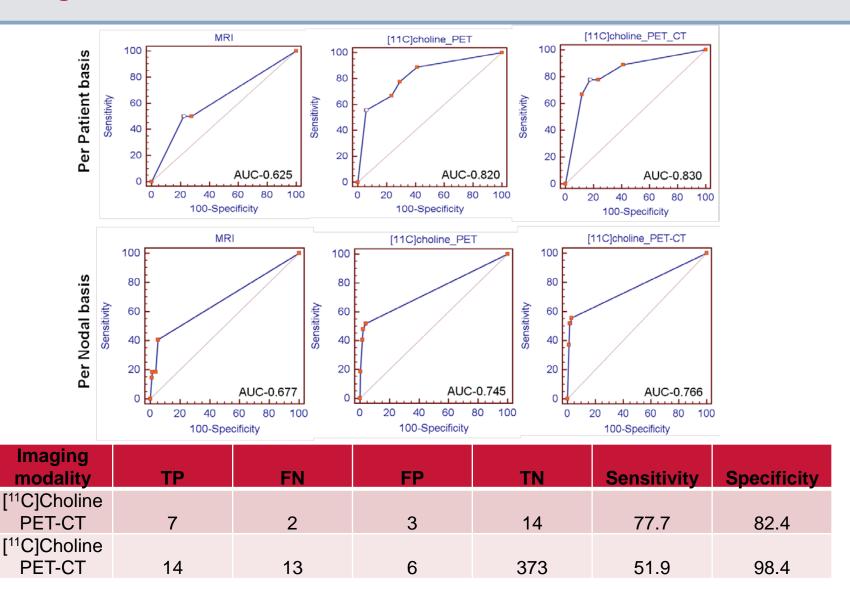
- 5 nodes TP: median maximum diameter 11mm (9 21 mm)
- 22 nodes FN
 - 18 were sub centimetre
 - 4 nodes > 1 cm missed due to clustering
- 5 nodes in 4 pts FP
 - Sampling error
 - Reactive EI nodes
- Sensitivity 50%
- Specificity 72.2%



Nodal Analysis on [11C]choline PET-CT: TP Nodes


- 14 nodes in 7 patients were TP
- Median maximum diameter: 9mm (4 20 mm)
- 13 nodes were FN micro metastases

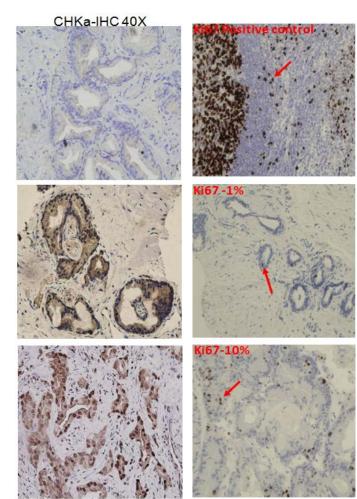
Nodal Analysis on [11C]choline PET-CT: FP Nodes

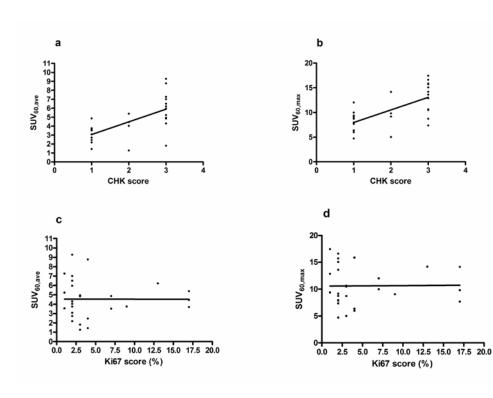


- 6 nodes in 4 patients were FP
 - Reactive Ext iliac nodes
 - Sampling error

[¹¹C]Choline uptake in pelvic nodes

Diagnostic Performance

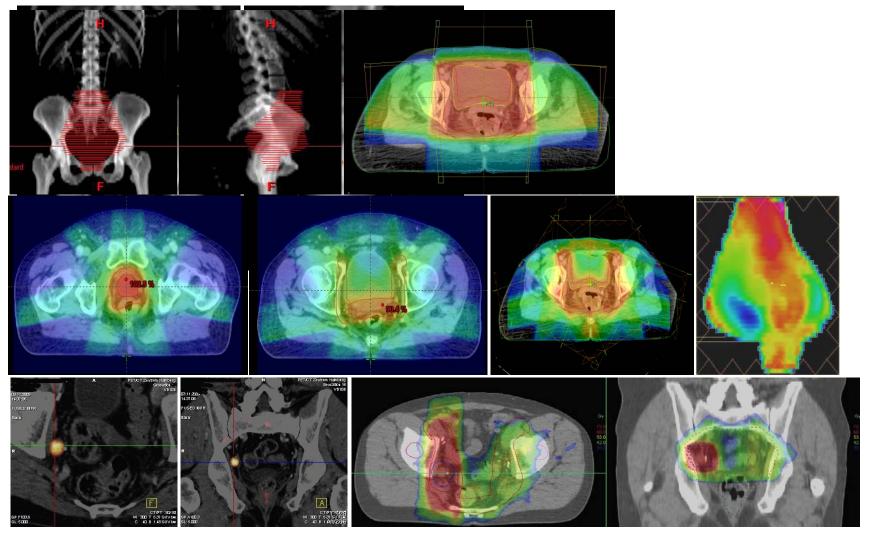



Imaging, Diagnosis, Prognosis

Clinical Cancer Research

Use of [¹¹C]Choline PET-CT as a Noninvasive Method for Detecting Pelvic Lymph Node Status from Prostate Cancer and Relationship with Choline Kinase Expression

Kaiyumars Contractor¹, Amarnath Challapalli¹, Tara Barwick², Mathias Winkler¹, Giles Hellawell¹, Steve Hazell³, Giampaolo Tomasi¹, Adil Al-Nahhas², Paola Mapelli¹, Laura M. Kenny¹, Paul Tadrous⁴, R. Charles Coombes¹, Eric O. Aboagye¹, and Stephen Mangar¹



Conclusions

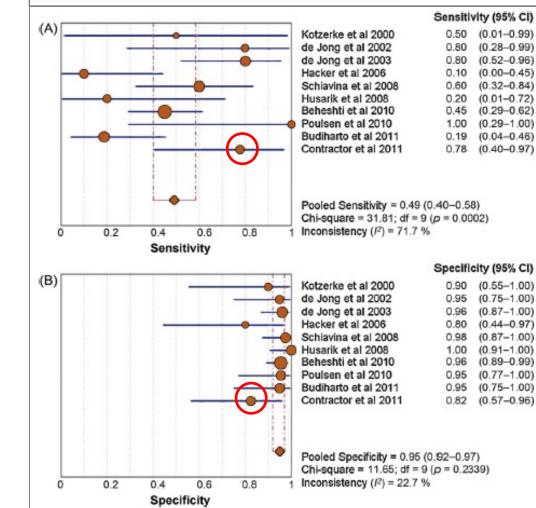
- [¹¹C]choline PET-CT can be used as a non-invasive means of staging pelvic lymph nodes in prostate cancer - highly specific and more sensitive than PET alone or MRI
- High specificity selecting out patients with high risk prostate cancer who may not need pelvic radiotherapy or enable dose escalation
- [¹¹C]choline PET-CT could be used as a non-invasive surrogate for CHK expression

Prostate RT Planning: A Paradigm shift

Würschmidt et al, Radiation Oncology 2011

Research Challenges

- Duration of recruitment
- Single centre vs. Multi centre
- Co-ordination with Nuclear Medicine Radiologists/ Urologists/ Oncologists/ Pathologists
- Sample size
- Funding for the scans


- Income and Caller

Review - Prostate Cancer

Utility of Choline Positron Emission Tomography/Computed Tomography for Lymph Node Involvement Identification in Intermediate- to High-risk Prostate Cancer: A Systematic Literature Review and Meta-analysis

Laura Evangelista^{a,*}, Andrea Guttilla^b, Fabio Zattoni^b, Pier Carlo Muzzio^c, Filiberto Zattoni^b

^a Radiotherapy and Nuclear Medicine Unit, Istituto Oncologico Veneto IOV – IRCCS, Padua, Italy; ^b Department of Oncological and Surgical Sciences, Urology Clinic, University of Padua, Italy; ^c Radiology Oncology Unit, Istituto Oncologico Veneto IOV – IRCCS, Padua, Italy

No. of patients	Radiopharmaceutical and imaging scan	Scan	
12	11C-Choline	PET	
25	11C-Choline	PET	
67	11C-Choline	PET	
20	18F-Choline	PET/CT	
57	11C-Choline	PET/CT	
43	18F-Choline	PET/CT	
130	18F-Choline	PET/CT	
25	18F-Choline	PET/CT	
36	11C-Choline	PET/CT	
26	11C-Choline	PET and PET/CT	

Heterogenous sensitivity

- Patient selection
- •Surgical technique

Evangelista et al, Eur Urol, Jun, 2013

CR-UK & EPSRC Cancer Imaging Centre at Imperial College, London, in association with the MRC and Department of Health (England)

Office for Clinical Research Infrastructure

NIHR Statistical Group: Imaging in Translation Research Meeting

15:30 – 16:00 Delegate feedback and panel questions

SESSION 3 CHAIR: Professor Doug Altman

Dr Tom Fanshawe Mr Mark Samuels Dr Declan O'Regan Prof Steven Keevil Dr Gina Brown Prof Janet Peacock Dr James Moon Dr Amar Challapalli