

How to design a dose-finding study using the Continual Reassessment Method

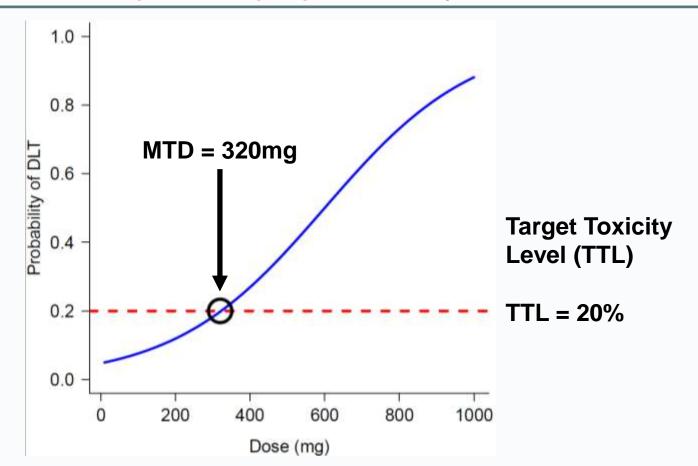
Graham Wheeler Cancer Research UK & UCL Cancer Trials Centre University College London

NIHR Statistics Group Second Meeting of the Early Phase Trials Research Section

> Guy's Hospital, London 16th February 2018

Outline

- The continual reassessment method
- Designing a trial
- What does our paper provide?


Outline

- The continual reassessment method
- Designing a trial
- What does our paper provide?

<u>Aim:</u> Find the maximum tolerated dose (MTD) of a drug

The dose expected to produce some degree of unacceptable, dose-limiting toxicity (DLT) in a specified proportion of patients

The main steps of the CRM

- 1. Choose a TTL
- 2. Estimate the risk of DLT for each dose
- 3. Choose a model to describe the relationship between dose levels and risk of DLT
- 4. Update the model using all available data and calculate the best estimate of the MTD
- 5. Allocate the next patient(s) using the MTD estimate as a guide

Two possible models for the CRM

Power/Empiric Model (1-parameter)

 $DLT risk = dose^b$

b = 0.65

b = 2.7

b = 10

1

0.9

8.0

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

2

1

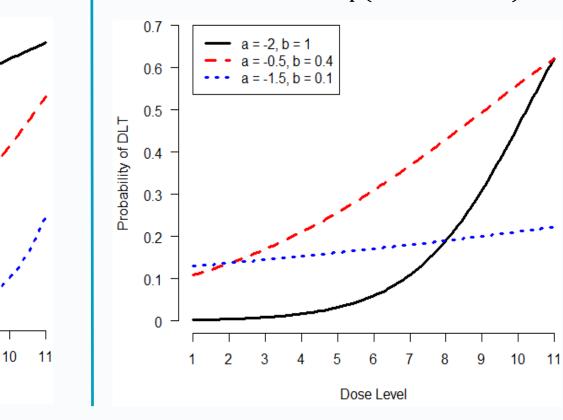
3

4

5

6

Dose Level


9

8

Probability of DLT

Logistic Model (1- or 2-parameter)

$$DLT \ risk = \frac{\exp(a + b \times dose)}{1 + \exp(a + b \times dose)}$$

Estimate risks of DLT (skeleton)

Need to specify a *skeleton* (prior DLT risks)

- a) Use previous trial data and clinical judgement
- b) Have a prior belief on what the MTD is, but not DLT risks of other doses?
 - Can use code provided in paper to generate a skeleton!
- Can then use skeleton to compute *dose labels*, to ensure model exactly fits prior DLT risks

Notes on models and skeletons

- Model and skeleton choice are not unique
 - Different setups can give identical recommendations
 - But skeleton choice is not arbitrary
- 1 vs. 2 parameter debate
- For 1 parameter models, guaranteed to (eventually) find the MTD

Outline

- The continual reassessment method
- Designing a trial
- What does our paper provide?

You decide (1) – Bayesian or Likelihood?

How do you want to estimate DLT risks in your trial?

Bayesian	Likelihood
Specify a prior distribution on model parameter(s) = uncertainty around DLT risk at each dose	Estimate parameter (and DLT risks) using trial data only
Use prior and observed data to update model parameter(s) = update distribution of DLT risk per dose	Requires both at least one DLT and non-DLT response before estimates can be obtained
Priors can be as precise (based on other data) or vague as you wish – can be calibrated	Use a two-stage design – have a rule- based escalation until 1 st DLT observed
Need to asses how different priors affect trial conduct	

You decide (2) – Decision rules

- Does next patient get
 - Largest dose with DLT risk no larger than TTL?
 - Dose with DLT risk closest to TTL?
- What is your starting dose?
- Will you allow skipping of untested doses?

You decide (3) – Sample size & Cohort size

- Sample size often based on practical constraints
 - Recruitment, budgets, available sites, number of doses
- Formula proposed for a lower bound to give the "correct" MTD x% of the time (on average)
- Proposal: specify both a lower bound (investigate in simulations) and a practical upper bound
- Cohort size: often 1-3 patients

You decide (4) – Stopping rules

- May want to stop trial early if
 - Dosing more patients won't help you learn anything new
 - The lowest dose available is too toxic

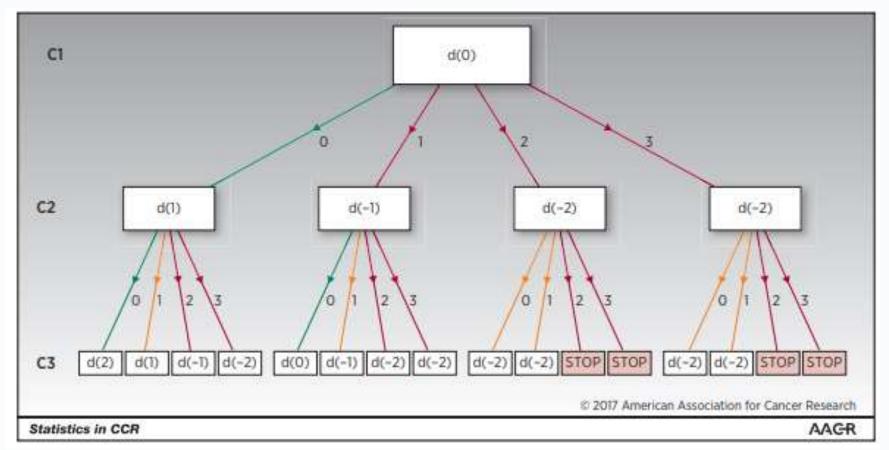
Stop trial if

- "m consecutive patients have received one dose"
- "probability that next *m* patients will be given same dose > 90%"
- "width of confidence/credible interval reaches a specific level"
- "> 90% chance that DLT risk at lowest dose is above TTL"
- ... or any combination of the above

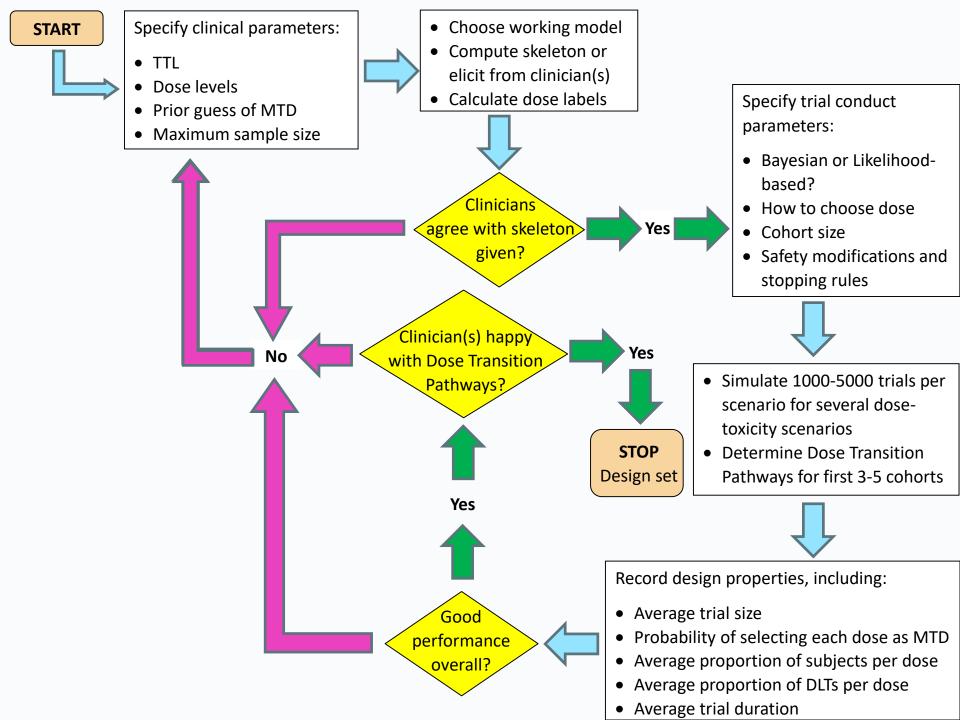
Simulations

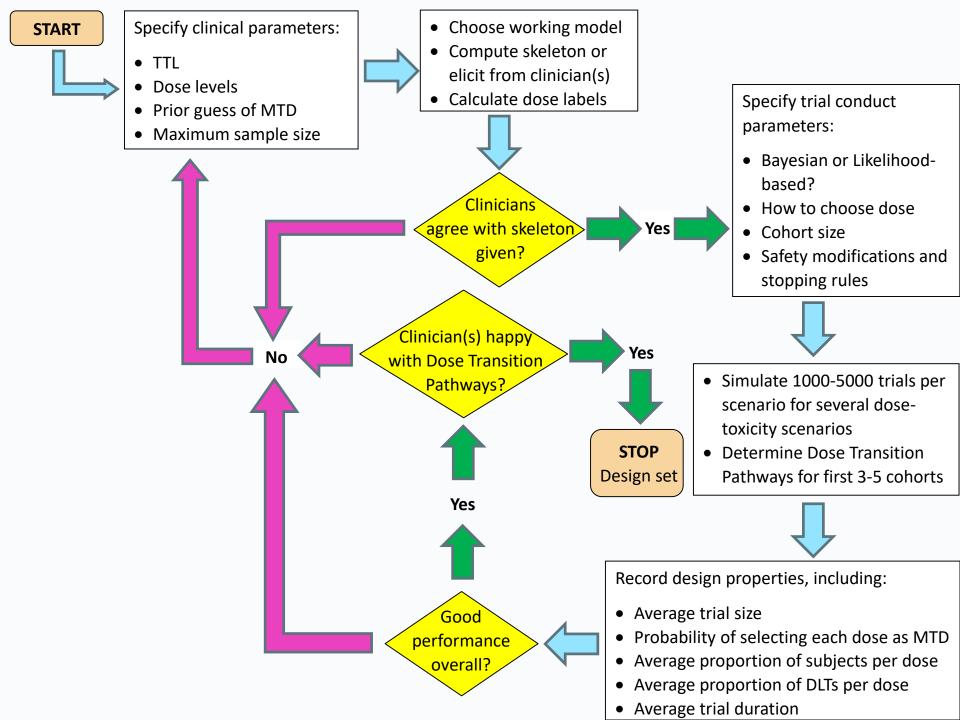
What's the chance each dose is chosen as the MTD? Average sample size? Risk of overdose?

• Simulate design over several dose-toxicity curves


Allows you to compare to other designs (including 3+3 and theoretical benchmark), and assess whether you need to make changes to any choices

Also is good evidence for grant applications and trial protocols




Dose Transition Pathways

Can look at first few cohorts to see what would be recommended by design? If not happy, change design

Yap et al (2017) Clin Cancer Res. DOI: 10.1158/1078-0432.CCR-17-0582

Recommendations

- Talk to a statistician!
- Allow plenty of time for designing the trial (and simulating/re-simulating designs)
- Model: power or logistic
- No. doses: 3-8 (sample size, pre-clinical, past trials?)
- Cohort size: 1-3 (≤ max sample size ÷ No. doses)
- Bayesian/Likelihood?
 - Bayesian (if you have some relevant data/insight, use it)
- Decision rules: no skipping, start dose = low but sensible

Outline

- The continual reassessment method
- Designing a trial
- What does our paper provide?

Resources

- Design flowchart
- Recommendations for design parameters
- Good practice guidelines for conducting simulation studies
- Software suggestions
- Example trials (Bayesian and likelihood-based)
- Example code for generating the skeleton and dose labels
- Suggested text for a trial protocol

Summary

- Designing a CRM trial requires more planning than a 3+3 design, but is worth it in the end!
- We describe step-by-step how to design a CRM trial, with recommendations given along the way
- We provide resources to aid the design and conduct of a trial, citing other helpful research and example studies

Graham M. Wheeler · Adrian P. Mander · Alun Bedding · Kristian Brock Victoria Cornelius · Andrew P. Grieve · Thomas Jaki · Sharon B. Love Lang'o Odondi · Christopher J. Weir · Christina Yap · Simon J. Bond

Cancer Research UK and UCL Cancer Trials Centre

UNIVERSITY^{OF} BIRMINGHAM

THE UNIVERSITY

of EDINBURGH

Imperial College

UNIVERSITY OF CAMBRIDGE

Hubs for Trials

Methodology Research

MRC

London

The story so far...

- 27/06/17: Submitted to British Journal of Cancer
 29/06/17: Rejected
 06/07/17: Appeal submitted
 10/07/17: Rejected
- 18/09/17: Submitted to BMC Medicine26/09/17: Rejected
- 04/10/17: Submitted to BMC Medical Research Methodology 05/02/18: "Reviews received" ...